Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 169299, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38104834

RESUMEN

Sulfonamides (SAs) are extensively used antibiotics in the prevention and treatment of animal diseases, leading to significant SAs pollution in surrounding environments. Microbial degradation has been proposed as a crucial mechanism for removing SAs, but the taxonomic identification of microbial functional guilds responsible for SAs degradation in nature remain largely unexplored. Here, we employed 13C-sulfamethazine (SMZ)-based DNA-stable isotope probing (SIP) and metagenomic sequencing to investigate SMZ degraders in three distinct swine farm wastewater-receiving environments within an agricultural ecosystem. These environments include the aerobic riparian wetland soil, agricultural soil, and anaerobic river sediment. SMZ mineralization activities exhibited significant variation, with the highest rate observed in aerobic riparian wetland soil. SMZ had a substantial impact on the microbial community compositions across all samples. DNA-SIP analysis demonstrated that Thiobacillus, Auicella, Sphingomonas, and Rhodobacter were dominant active SMZ degraders in the wetland soil, whereas Ellin6067, Ilumatobacter, Dongia, and Steroidobacter predominated in the agricultural soil. The genus MND1 and family Vicinamibacteraceae were identified as SMZ degrader in both soils. In contrast, anaerobic SMZ degradation in the river sediment was mainly performed by genera Microvirga, Flavobacterium, Dechlorobacter, Atopostipes, and families Nocardioidaceae, Micrococcaceae, Anaerolineaceae. Metagenomic analysis of 13C-DNA identified key SAs degradation genes (sadA and sadC), and various of dioxygenases, and aromatic hydrocarbon degradation-related functional genes, indicating their involvement in degradation of SMZ and its intermediate products. These findings highlight the variations of indigenous SAs oxidizers in complex natural habitats and emphasize the consideration of applying these naturally active degraders in future antibiotic bioremediation.


Asunto(s)
Ecosistema , Sulfametazina , Humanos , Animales , Porcinos , Sulfametazina/análisis , Granjas , Anaerobiosis , Ríos , Antibacterianos/análisis , Sulfonamidas , Suelo , Sulfanilamida/análisis , ADN , Biodegradación Ambiental
2.
ChemSusChem ; 16(16): e202300082, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37086395

RESUMEN

Electrochemical oxygen reduction reaction (ORR) is fundamental for many energy conversion and storage devices. Selective tuning of *OOH/*OH adsorption energy to break the intrinsic scaling limitation (ΔG*OOH =ΔG*OH +3.2 eV) is effective in optimizing the ORR limiting potential (UL ), which is practically challenging to achieve by constructing a particular catalyst. Herein, using first-principles calculations, we elucidated how to rationally plant an additional *OH that can selectively interact with the ORR intermediate of *OOH via hydrogen bonding, while not affecting the *OH intermediate. Guided by the design principle, we successfully tailored a series of novel carbon-based catalysts, with merits of low-cost, long-lasting, synthesis feasibility, exhibiting a high UL (1.06 V). Our proposed strategy comes up with a new linear scaling relationship of ΔG*OOH =ΔG*OH +2.84 eV. This approach offers a great possibility for the rational design of efficient catalysts for ORR and other chemical reactions.

3.
J Phys Chem Lett ; 13(30): 7043-7050, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35900130

RESUMEN

The hydrogen evolution reaction (HER) and the oxygen reduction reaction (ORR) are crucial in various energy conversion and storage technologies. Performances of catalysts are appreciably affected by the adsorption energies of key reaction intermediates, whereas the active site engineering to achieve optimal adsorption energy remains challenging. Herein, using density functional theory calculations, we proposed a novel design of transition metal single-atom active sites supported by carbon nanocone (CNC) with high coordination diversity. The particularly diversified electronic states of CNC carbon atoms endow varying coordination to the metal active sites, which then results in a near-continuum distribution of adsorption energies for key intermediates. With this mode, 33 CNC-based active sites exhibit outstanding catalytic potential for the HER with near-zero free energy barriers. Meanwhile, five distinct Cu-N3 active sites can serve as promising candidates for the ORR with low overpotentials. Our work suggests a new strategy of making nanocone-based single-atom catalysts with promising catalytic performance.

4.
Placenta ; 89: 67-77, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31704631

RESUMEN

INTRODUCTION: Idiopathic polyhydramnios (IPH) is an abnormal increase in amniotic fluid volume (AFV). This condition has unknown etiologies and is associated with various adverse pregnancy outcomes including maternal and fetal complication. This study aims to establish a comparative proteome profile for the human amniotic fluid (AF) of IPH and normal pregnancies and identify the responsible mediators and pathways that regulate AFV. METHODS: We first employed coupled isobaric tags for relative and absolute quantitation (iTRAQ) proteomics and bioinformatics analysis to examine the differentially expression proteins (DEPs) in the AF of IPH and normal pregnancies. Second, CUL5, HIP1, FSTL3, and LAMP2 proteins were selected for verification in amnion, chorion, and placental tissues by Western blot analysis. RESULTS: We identified 357 DEPs with 282 upregulated and 75 downregulated. Bioinformatics analysis revealed that cell, cellular process, and binding were the most enriched Gene Ontology terms. Amoebiasis, hematopoietic cell lineage, and NF-kappa B signaling pathway were the top significant pathways. In the verification procedure, FSTL3 protein had a highly significant expression in the amnion, chorion, and placentas of IPH and normal AFV groups (p < 0.05). DISCUSSION: Our results provide new insights into idiopathic polyhydramnios and offer fundamental points for future studies on AFV.


Asunto(s)
Líquido Amniótico/metabolismo , Placenta/metabolismo , Polihidramnios/metabolismo , Proteoma , Adulto , Amnios/metabolismo , Corion/metabolismo , Biología Computacional , Femenino , Humanos , Embarazo , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...